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Chapter 1 Introduction 

1.1 Overview 

IODA, short for integrative omics data analysis, is user-friendly Java based graphical 

interface software. It implements an integrative platform for testing for best algorithm 

and performing different algorithms to detect differentially expressed genes. Then users 

can perform the pathway enrichment analysis based on human KEGG pathways 

(http://www.genome.jp/kegg). The differentially expressed genes can be obtained by 3 

kinds of omics data; i.e mRNA, microRNA and ChIP-seq data. All the panels and 

functions integrated in IODA can be used individually to tackle the analysis process. 

Compared to other software based on integrative analysis, IODA is the first local, 

algorithm selection, cross-multiple level of datasets, pathway enrichment analysis and 

easy to use software in one integrative platform. Then we make a consistency analysis 

on the results by an overlapping analysis.● 

We proposed six algorithms for heterogeneous detection incorporated in IODA are 

the list below.  

 T-test- A t-test is any statistical hypothesis test in which the test statistic follows 

a Student's t distribution if the null hypothesis is supported. It can be used to 

determine if two sets of data are significantly different from each other, and is most 

commonly applied when the test statistic would follow a normal distribution if the 

value of a scaling term in the test statistic were known. 

Recently, it has been recognized that many oncogenes show altered expression in 

only a small proportion of cancer samples(Lian, 2008). Such features will be 

removed when using t-test or t-test like methods because they average gene 

expression levels in all the studied samples. Tomlin et al. conclude that t-tests were 

not adequate for detecting heterogeneous patterns of oncogenes (Tomlins, et al., 

2005). 

 LSOSS-LSOSS is the abbreviation of Least Sum of Ordered Subset Squared, The 

http://www.genome.jp/kegg
http://en.wikipedia.org/wiki/Statistical_hypothesis_testing
http://en.wikipedia.org/wiki/Test_statistic
http://en.wikipedia.org/wiki/Student%27s_t-distribution
http://en.wikipedia.org/wiki/Null_hypothesis
http://en.wikipedia.org/wiki/Normal_distribution
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general idea of LSOSS is to use the sum of squares of two ordered subsets of 

cancer samples to estimate the square sum of the t-statistic and to use the 

mean value of the appealing subset of cancer samples to estimate the mean 

value of cancer samples of the t-statistic(Wang and Rekaya, 2010). 

 MOST-MOST is the abbreviation of maximum ordered subset t-statistics, Lian et 

al proposed another statistics for the detection of cancer differential gene 

expression which have similar power to ORT when the number of activated 

samples is very small, but perform better when more samples are differentially 

expressed(Lian, 2008). 

 COPA- Tomlins et al (2005) have proposed the ―cancer outlier profile analysis‖ 

(COPA) method for detecting cancer genes which show increased expressions in a 

subset of disease samples. They argue that in the majority of cancer types, 

oncogene has heterogeneous activation patterns; traditional analytical methods, for 

example, t-statistic, which search for common activation of genes across a class of 

cancer samples, will fail to find such oncogene expression profiles(Wu, 2007).  

 ORT- Wu et al study statistical methods to detect cancer genes that are over- or 

down-expressed in some but not all samples in a disease group. This has proven 

useful in cancer studies where oncogenes are activated only in a small subset of 

samples. They propose the outlier robust t-statistic (ORT), which is intuitively 

motivated from the t-statistic; the most commonly used differential gene 

expression detection method(Wu, 2007). 

 OS-Tibshirani et al proposed a method for detecting genes that, in a disease group, 

exhibit unusually high gene expression in some but not all samples. This can be 

particularly useful in cancer studies, where mutations that can amplify or turn off 

gene expression often occur in only a minority of samples. 

We propose three different omics level data which can be analyzed in IODA are the 

list below: 

 Gene expression data (mRNA level) 

 MicroRNA level data 

 ChIP-seq level data 

http://biostatistics.oxfordjournals.org/content/8/3/566.long#ref-6
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IODA provide a novel platform with emphasis on the pathways consistency 

analysis generated from pathway enrichment analysis from multiple omics data, which 

will finally lead to a robust pathway list. This software is particularly useful for 

researchers who want to integrate different level omics data and various datasets from 

different researchers for further pathway enrichment analysis and make a consistency 

analysis on the pathway results. We have verified the hypothesis that common 

molecular signatures are more similar at the pathway level than at the gene level. So we 

propose this platform to eliminate the heterogeneity of different datasets and integrative 

the different omics datasets at a system level and obtain deeper insight on the 

underlying biological mechanisms of the data generated from gene microarrays, 

microRNA microarrays and next generation sequencing ChIP-seq data. 

With the application of software IODA, biologists will find it easy to analyze the 

omics data from different omics levels and datasets with pathway enrichment analysis. 

The whole workflow for each dataset analysis was integrated in IODA, such as test for 

best algorithm to perform outlier detection, differentially expressed genes detection by 

appropriate algorithm, differentially expressed microRNAs detection by appropriate 

algorithm, microRNAs target genes detection, ChIP-seq data peaks detection, KEGG 

pathway enrichment analysis, pathway consistency analysis with different omics level. 

This tutorial helps users to run IODA on Linux (Ubuntu for example) and Windows (7 

or later versions) to facilitate the biological data interpretation in a step-by-step style. 

1.2 Basic concepts 

1.2.1 Pathway 

A pathway is a group of related, genes, metabolites, and their mutual interactions, 

which form an aggregate biological function. A similar concept is gene/compound set, 

which means some manually defined gene/compound sets according to their 

functionality or ontology. Gene/compound set can be interpreted as a superior concept 

of pathway. 

The KEGG pathway map is a molecular interaction/reaction network diagram 
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represented in terms of the KEGG Orthology (KO) groups, so that experimental 

evidence in specific organisms can be generalized to other organisms through genomic 

information. Each map is manually drawn with in-house software called KegSketch, 

which generates the KGML+ file. This file is an SVG file containing graphics objects 

that are associated with KEGG objects. 

1.2.2 Gene expression data 

Gene expression is the process by which information from a gene is used in the 

synthesis of a functional gene product. In genetics, gene expression is the most 

fundamental level at which the genotype gives rise to the phenotype. The genetic 

code stored in DNA is ―interpreted‖ by gene expression, and the properties of the 

expression give rise to the organism's phenotype. Such phenotypes are often expressed 

by the synthesis of proteins that control the organism's shape, or that act as enzymes 

catalyzing specific metabolic pathways characterizing the organism. 

Publicly available microarray expression datasets can be downloaded by Gene 

Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) database which had been 

generated by independent laboratory. These datasets were measured with different 

technologies and platforms. Comparative cancer analyses included cancer versus 

respective normal tissue, high grade versus low grade cancer, poor outcome versus 

good outcome, metastatic versus primary cancer, and subtype1 versus subtype2. Thus, 

our analysis across multiple datasets, based on normal prostate versus tumor prostate 

samples, was comparable. 

The individual analysis of each dataset consisted of four major steps: Data 

preprocessing, differential expression analysis, pathway enrichment analysis and 

pathway consistency analysis. 

1.2.3 MicroRNA data 

MicroRNAs (miRNAs) are small non-coding RNAs of approximately 

22-nucleotides. They play important roles in gene regulation at post-transcriptional 

http://en.wikipedia.org/wiki/Gene
http://en.wikipedia.org/wiki/Gene_product
http://en.wikipedia.org/wiki/Genetics
http://en.wikipedia.org/wiki/Genotype
http://en.wikipedia.org/wiki/Phenotype
http://en.wikipedia.org/wiki/Genetic_code
http://en.wikipedia.org/wiki/Genetic_code
http://en.wikipedia.org/wiki/DNA
http://en.wikipedia.org/wiki/Enzyme
http://www.ncbi.nlm.nih.gov/geo/
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level. They are able to repress the activity of complementary mRNAs by targeting the 

3’-untranslated regions(Bartel, 2009). Release 19 of the miRBase database contains 

more than 2200 mature miRNA sequences for human(Kozomara and Griffiths-Jones, 

2011). Aberrant miRNA expression was shown related to the generation of cancer stem 

cells and the tumor genesis(Lin, et al., 2010; Liu, et al., 2011; Mallick, et al., 2011). 

Microarray-based technologies have routinely been used for profiling molecular 

expression in cancer. Microarray allows simultaneous expression profiling of tens of 

thousands of genes in normal versus malignant cells. We can use these miRNA 

microarray datasets to detect the differentially expressed miRNAs. Then we obtain the 

target genes of them. 

1.2.4 ChIP-seq data 

The disease associated ChIP-seq datasets were extracted from Gene Expression 

Omnibus (GEO). Peak detection algorithm is crucial to the analysis of ChIP-seq 

dataset(Ding, et al., 2012). Currently, several tools are available to identify 

genome-wide binding sites of transcription factors, such as FindPeaks(Fejes, et al., 

2008), F-Seq (Boyle, et al., 2008), CisGenome(Ji, et al., 2011), MACS (Zhang, et al., 

2008), SISSRs (Narlikar and Jothi, 2012), and QuEST (Valouev, et al., 2008). These 

different methods have their own advantages and disadvantages, although they act in a 

similar manner. ChIP-seq data has regional biases because of sequencing and mapping 

biases, chromatin structure, and genome copy number variations (Redon, et al., 2006). 

In order to get more stable result, the IODA integrate MACS tool to identify the binding 

sites of disease related transcription factors in this study. The tool uses control samples 

to guide peak finding and calculate the FDR (False Discovery Rate) value of peaks. 

Then IODA also provide the PeakAnnotator tool to annotate the peaks. 

1.2.5 Pathway enrichment analysis 

Pathway Enrichment Analysis is the analysis to find the most relevant pathway, 

according to the gene/protein data, by calculating their differentially expression (DE) 
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values to fit in an enrichment model, and finally returns a list of pathways ranked by 

certain enrichment score. Currently, most evaluations of enrichment score employ 

probability approach, such as p-value. 

Pathway enrichment analysis helps reveal the underlying biological 

pathway/function from large biological data. It is the most commonly used in-silico 

function analysis for high-throughput omics data. 

We downloaded pathways from KEGG and use Fisher's Exact Test to calculate 

the p-value of each enriched pathway. As pathways of KEGG may update we also 

provide an application interface to get the results from the KEGG 

(http://www.genome.jp/kegg/) website directly by using POST request method. In 

computing, POST is one of many request methods supported by the HTTP protocol 

used by the World Wide Web. The POST request method is designed to request that a 

web server accepts the data enclosed in the request message's body for storage. It is 

often used when uploading a file or submitting a completed web form. IODA upload 

the request message’s body data to the website and obtain the pathway results in order 

to get the updated pathway data.  

1.3 Pipeline 

IODA guides users to follow the pipeline, i.e., best algorithm selection, 

expression data input, detect the differentially expressed outliers with the selected 

algorithm, microRNA target genes detection, ChIP-seq data annotation, pathway 

enrichment analysis, cross mapping and consistency analysis to perform 

Meta-analysis on pathway results, (Figure 1). 

In this study, IODA integrative three different levels of omics data and make a 

meta-analysis on the pathway results. For each omics level, there are a few datasets 

from the different laboratories, thus we make a consistency analysis on pathway level 

to get the common pathway results. Then we make a meta-analysis for all three omics 

level results. 

http://www.genome.jp/kegg/
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Fig. 1. The pipeline of IODA. 
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Chapter 2 Installing IODA 

2.1 Downloading IODA 

IODA can be downloaded online from http://www.ibio-cn.org/ under GPL 

version3.  

The GPL License is an open source license which ensures user with power to 

redistribute, modify and integrate the source code into their own programs. 

The dependent programs of IODA are Java, Python, R, Perl (available in their 

official websites). 

Table 1 The dependent programs of IODA 

Dependent programs Description M/O Remarks 

Java environment IODA cannot run without JRE or JDK Mandatory JRE or JDK, version 6 or 

later 

Python environment Peak calling tool MACS cannot run 

without Python 

Optional Python 2.7 or later 

R environment Pathway enrichment cannot run 

without R 

Optional R 3.4.1 or later 

Perl environment Pathway enrichment cannot run 

without R 

Optional Perl 5.24.2 or later 

2.2 Installing IODA 

IODA itself is a Java based program which needs No installation and can be run on 

Linux and Windows. To run IODA Java, R, Perl environment must be installed. If 

users want to use ChIP-seq level data analysis, they need install the Python 

environment.  

2.2.1 Java environment installation 

For Linux, users should install the ―Java SE Development Kit‖ in the terminal and 

http://www.ibio-cn.org/
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proceed. For Windows, you can download the binary installer from the website 

(http://www.oracle.com/technetwork/java/javase/downloads/index.html). Using 

Windows, users need to open up the system properties dialog, and locate the tab 

labeled Environment. Add your Java path to the PATH variable. 

2.2.2 R environment installation 

For Linux, users should download and install the R environment in the terminal 

and proceed. For Windows, you can download the binary installer from the website 

(https://www.r-project.org/). Using Windows, users need to open up the system 

properties dialog, and locate the tab labeled Environment. Add your R path to the 

PATH variable. 

2.2.3 Perl environment installation 

For Linux, users should download and install the Perl environment in the terminal 

and proceed. For Windows, you can download the binary installer from the website 

(http://www.perl.org/). Using Windows, users need to open up the system properties 

dialog, and locate the tab labeled Environment. Add your Perl path to the PATH 

variable. 

2.2.4 Python environment installation 

If users want to make the ChIP-seq level data analysis, MACS should be run in 

this panel as Python environment should be installed. The source code of Python can 

be downloaded on website (https://www.python.org/). Using Windows, users need to 

open up the system properties dialog, and locate the tab labeled Environment. Add 

your Python path to the PATH variable. 

For Linux we can install it using these command lines. 

  $ tar –jxvf Python-2.5.2.tar.bz2 

  $ cd Python-2.5.2 

  $ ./configure 

http://www.oracle.com/technetwork/java/javase/downloads/index.html
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  $ make 

$ make install 
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Chapter 3 Running IODA 

3.1 Running IODA 

IODA can run under Windows and Linux. First, users open the IODA folder and 

then double click the IntegrativeOmicsDataAnalysis.jar file to run the software. The 

main interface of IODA (figure 2) will appear if everything goes well. 

 

Fig. 2. The main interface of IODA. 

3.2 Function Panels 

After installation, IODA show a homepage of the software, there are six panels 

which conclude the different sub panels as shown below. 
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Fig. 3. The function panels of IODA. 

Each panel means different function. Users can select the different panels by click 

the tabbed navigation. 
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Chapter 4 The first step - Test for best 

algorithm 

IODA contains Test for best algorithm panel, if users click the ―Test algorithm‖ 

panel, they can use this function as shown below. 

 

Fig. 4. The test for best algorithm panel of IODA. 

4.1 Input datasets 

This panel is designed for mRNA and microRNA level microarray expression 

data. To address the complexity that t-tests were not adequate for detecting 

heterogeneous patterns of oncogenes. IODA compares the performance of the six 

methods in obtaining the disease associated DE-mRNAs and DE-miRNAs. We 

considered the DE-mRNAs and DE-miRNAs detected by at least four methods to be 

putative outliers. The percentage of these putative outliers in the original result of 

each method was calculated to measure the method’s accuracy. 

Users can choose the algorithm performs better than the other methods which has 
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the biggest median observation and smallest standard deviation. Then users can take 

the result by the best algorithm for the downstream analyses. 

4.1.1 mRNA (gene expression) microarray datasets  

Users can input mRNA microarray datasets to test the best algorithm. Here, all 

the dataset for algorithm detection must be imported with the same omics level. All 

the data should be prepared in the uniform plain text containing pre-processed 

expression of all samples. The demo data is described in 10.1. 

4.1.2 MicroRNA microarray datasets  

Users can input microRNA microarray datasets to test the best algorithm. Here, 

all the dataset for algorithm detection must be imported with the same omics level. All 

the data should be prepared in the uniform plain text containing pre-processed 

expression of all samples. The demo data is described in 10.2. 

4.2 Process for detecting outliers  

After preparing the mRNA and microRNA expression datasets, users need to add 

expression datasets to the datasets list table. After clicking the button ―Add dataset‖ a 

new window will be popped up, users should input files which are prepared as the 

specified format. And the datasets should be prepared in the same omics level. Users 

click the button ―Browse‖, then typing where the normal and malignant samples start 

and end. Finally the dataset will be loaded to the dataset list table after clicking the 

button ―OK‖. Users should be cautious to the start and end columns of samples. 

The datasets list table will list the file path of each dataset and where the normal 

start and end and the cancer start and end. Users can edit the start and end number in 

the table if it is needed. Users can delete the datasets by clicking the button ―Delete 

dataset‖ if users get it wrong with sample classification sometimes and reset the table 

by clicking the button ―Reset‖. 
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Fig. 5. The interface after clicking the ―Add dataset‖ button 

 

Fig. 6.  The dataset lists after three datasets are added. 

4.3 Test for best algorithm 

After importing the test datasets, users click the button ―Run test‖ to test for the 

best algorithm. A bar chart of the result will give an indicative of the best algorithm 

selection. An example of bar chart shows below. The different color means different 

dataset, the Y-axis means the percentage of the putative outliers in each dataset.  
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Fig. 7. The bar chart of algorithm test result. 

The overlapping percentages are caculated by the following steps: 

1. Detect the outliers of each dataset using the six algorithms. 

2. Count the number of occurrences of each outlier detected by the step 1. 

3. Screen out the putative outliers which number of occurrences is equal to or greater 

than 4 from step 2. 

4. The percentage is calculated as the number of putative outliers divides the number 

of outliers detected by step 1 for each algorithm. 
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Chapter 5 The second step - Pathway 

enrichment analysis 

IODA can obtain differentially expressed outliers and users can map them to the 

pathway enrichment tool by themself. There are many functional annotation systems 

which can be used to perform the pathway enrichment analysis for gene function, such 

as Gene Ontology (GO) categories(Ashburner, et al., 2000), canonical KEGG Pathway 

Maps(Kanehisa and Goto, 2000), and commercial software MetaCore-GeneGo 

Pathway Maps. 

KEGG Mapper – Search Pathway is the basic pathway mapping tool, where given 

objects (genes, proteins, compounds, glycans, reactions, drugs, etc.) are searched 

against KEGG pathway maps and found objects are marked in red. The objects in 

different types of pathway maps are specified by the following KEGG identifiers and 

aliases.  

This data is last updated on June 10, 2014. 

Table 2 KEGG identifiers and aliases 

Prefix Type KEGG identifier Alias 

map Reference pathway - metabolic K/R/EC numbers 

C/G/D numbers 

KO alias 

map Reference pathway - non-metabolic K number 

C/G/D numbers 

KO alias 

ko Reference pathway (KO) K number 

C/G/D numbers 

KO alias 

EC numbers 

ec Reference pathway (EC) EC number 

C/G/D numbers 

 

rn Reference pathway (Reaction) R number 

C/G/D numbers 

RP/RC numbers 

org Organism-specific pathway gene identifier 

C/G/D numbers 

gene alias (gene name) 

K/EC numbers 

In order to provide convenience for users, we also integrate the KEGG mapping 

tool in the IODA. The differentially expressed genes can be input as objects, and users 

will get the enriched pathway results.  

For IODA, in each omics type data analysis, there are ―Local pathway 

http://www.genome.jp/kegg/kegg3a.html
http://www.genome.jp/kegg/kegg3.html
http://www.genome.jp/kegg/kegg3.html
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enrichment‖ and ―Online pathway enrichment‖ button which can be used to perform 

the pathway enrichment analysis in the right panel as shown below. 

  

Fig. 8. The pathway enrichment button. 

5.1 Local pathway enrichment 

After clicking the ―Local pathway enrichment‖ button, a new window will be 

popped up. We made a Java based GUI for KEGG pathway enrichment and integrate 

it in IODA. Local pathway enrichment uses local pathways data we downloaded from 

KEGG. The data is saved at IODA\lib\KEGGPathway\ new.hsa.kegg.xls. Users can 

update it if needed. We recommend users use this to do KEGG enrichment analysis. 
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Fig. 9. The local pathway enrichment interface. 

The steps of using local pathway enrichment to do pathway enrichment are as 

follows.  

Step 1: Input differentially expressed genes file 

Click the ―Browse‖ button to select the differentially expressed genes file. 

Step 2: Input false discovery rate 

Input the FDR value. The enriched pathway result will be filtered by this value. If 

input value is 1 then the entire enriched pathway will be returned. 

Step 3: Input output file 

Click the ―Browse‖ button to select the output file. We recommend use ―xls‖ as 

the file extension. 

Step 4: Click run button 

The result contains information about pathway ID, pathway name, differentially 

expressed genes in this pathway, all genes in this pathway, p-value, q-value and 

differentially expressed gene list. 
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Fig. 10. The local pathway enrichment result. 

5.2 Online pathway enrichment 

After clicking the ―Online pathway enrichment‖ button, a new window will be 

popped up. We made a Java based GUI for KEGG pathway enrichment and integrate 

it in IODA. Online pathway enrichment uses HTTP protocol to submit request to 

KEGG server and receive response. It needs the computer connect to internet and the 

response time is based on the network status and the KEGG server.  

 

Fig. 11. The online pathway enrichment interface. 

The steps of using online pathway enrichment to do pathway enrichment are as 
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follows. 

Step 1: Input the objects 

Users need to input the different expressed genes in the ―enter objects‖ textbox. 

Users can also import the different expressed genes from file. 

Step 2: Set the parameters 

Users can set the different parameters in the following in the check box. Users 

can include the aliases for each object, and display the objects which are not found in 

the given list. Moreover, users can also search pathways containing all objects.  

Step 3: Save the results 

After clicking the search button, the pathway results will be emerged in the 

―result‖ textbox, users can save the Pathway and Gene results by clicking the ―Save 

Pathways‖ and ―Save Genes‖ button. Then the results will be stored in text file with 

the pathway and enriched gene information. There is an example result file shown 

below. The result contains pathways and their enriched genes. 

 

Fig. 12. The online pathway enrichment result. 
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Chapter 6 The third step-Run mRNA level 

Users can make the mRNA (gene expression) analysis after chose the ―Run 

mRNA‖ panel. The panel is shown below. 

 

Fig. 13. The interface of mRNA analysis. 

6.1 Prepare mRNA expression datasets 

Firstly, users need to prepare the mRNA expression data to the requirement of IODA 

for the following analysis.  

Uniform plain text containing pre-processed expression of all samples: 

 Tab/comma delaminated 

 One head row and one ID column 

 Equal columns each row 

 Pre-processed 
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Fig. 14. The pre-processed mRNA expression data. 

6.2 Add mRNA expression datasets to dataset list table 

After preparing the mRNA level expression datasets, users need to add mRNA 

expression datasets. After clicking the button ―Add dataset‖, then a new window will be 

popped up, users should input file which are prepared as the specified format. Users 

click the button ―Browse‖, then typing where the normal and malignant samples start 

and end. Finally the dataset will be loaded to the datasets list table after clicking the 

button ―OK‖. Users should be cautious to the start and end columns of samples. 

The datasets list table will list the file path of each dataset and where the normal 

start and end and the cancer start and end. Users can edit the start and end number in 

the table if it is needed. Users can delete the datasets by clicking the button ―Delete 

dataset‖ if users get it wrong with sample classification sometimes and reset the table 

by clicking the button ―Reset‖. 

 

Fig. 15.  Interface after clicking the ―Add dataset‖ button 
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6.3 Identification of differentially expressed genes 

After importing the various datasets users choose the appropriate algorithm to 

deal with the input datasets. This panel also provides the different outlier quantile to 

obtain the different results which make a limit of quantity. By choosing algorithm and 

outlier quantile, then users click the button ―Run‖ to make the differentially expressed 

genes identification. The results will be shown in the follow textbox and click the 

button ―Save outliers‖ in the right panel to save the results with the dataset name.  

 

Fig. 16.  The result of identification of differentially expressed genes. 

6.4 Pathway enrichment analysis    

With the outlier genes, users can input the gene objects and got the pathways 

results as shown in Chapter 5. 

6.5 Pathways cross mapping    

Meanwhile, users can input the enriched pathway results and make the 

consistency analysis. Users click the button ―Input Pathways‖ to import the enriched 

pathways. Then the file path will be shown in the follow table. After selecting the 

pathway files users can see the overlapping results by clicking the button ―Cross 

mapping‖. Then the overlapping pathway results will be shown in the text box upon 

the pathways list table. The results will show the pathway name, the times it appears 

and the genes in the pathway.  
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Fig. 17.  The pathway list table. 

 

Fig. 18.  The result of pathway cross mapping. 

6.6 Show pathway cross mapping results 

Users click the button ―Show results‖ to see the pathway results in the panel. We 

make a bar chart by the various pathway results which will be shown in the box. A 

distribution of enriched pathways is shown in a bar chart. The box is not enough to 

show all bar graph, users can click the button ―Enlarge‖. There will be a new window 

to show the results. The y-axis is the amount of the enrich pathways appear in how 

many datasets while the x-axis is the frequency of the data occurrence in various 

datasets. ―>=1 data‖ means the enriched pathways appear how many times. The bar 

graph is made to show the enriched pathways clearly; afterwards users will make the 

consistency analysis by select the pathways which are appearing in the appropriate 

datasets in the combo box in the right of bar graph panel. The number means the 

appearance times. Later, users click the button ―Output‖ to output the results. 

Moreover, users can clear the text box by clicking the button ―Reset results‖.  
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Fig. 19.  The bar chart of pathway cross mapping result. 

 

Fig. 20.  The enlarged bar chart. 

Then the output file will include some information about the pathway as shown 

below: 

 Pathway name 

 Pathway occurrence count 

 The enriched genes in each pathway 

 The enriched genes belong to which dataset 

Finally, the whole steps were completed here. First of all, users should prepare the 

mRNA expression data, and then identify the differentially expressed genes by 

choosing the appropriate algorithm and outlier quantile. Secondly, the detected genes 

are mapped to KEGG pathway which are integrated in IODA to make the pathway 

enrichment analysis. Thirdly, the consistency analysis was applied on the pathway 

results. 
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Chapter 7 The forth step-Run microRNA level  

Users can make the microRNA level analysis after choosing the ―Run microRNA‖ 

panel. The panel is shown below. 

 

Fig. 21.  The interface of microRNA. 

7.1 Prepare microRNA expression datasets 

Firstly, users need to prepare the microRNA expression to the specified format of IODA 

for the following analysis. 

Uniform plain text containing pre-processed expression of all samples: 

 Tab/comma delaminated 

 One head row and one ID column 

 Equal columns each row 
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 Pre-processed 

 

Fig. 22. The pre-processed microRNA expression data. 

7.2 Add microRNA expression datasets to dataset list table 

It is the same as shown in the mRNA level. Please reference step 2 of chapter 6. 

7.3 Identification of differentially expressed microRNAs 

After importing the various datasets users choose the appropriate algorithm to deal 

with the input datasets. This panel also provides the different outlier quantile to obtain 

the different results which make a limit of quantity. By choosing algorithm and outlier 

quantile, then users click the button ―Run‖ to make the differentially expressed genes 

identification. The results will be shown in the follow textbox and click the button 

―Save outliers‖ in the right panel to save the results with the dataset name. It is also 

same as shown in the mRNA panel. 

 

Fig. 23.  The result of identification of differentially expressed microRNA. 
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7.4 MicroRNA target genes detection  

After generating differentially expressed microRNAs users can get the target genes 

from the detected microRNAs by clicking the button ―Gene targets‖ as shown below.  

 

Fig. 24. The target genes of detected microRNAs. 

IODA uses a integrative miRNA-mRNA targeting dataset which was the 

combination of experimentally validated targeting data and computational prediction 

data and has been proposed in our previous work (Zhang, et al.). The experimentally 

validated data consist of information from different databases, such as miRecords (Xiao, 

et al., 2009), TarBase (Sethupathy, et al., 2006), miR2Disease(Jiang, et al., 2009), and 

miRTarBase (Hsu, et al., 2011). Meanwhile, the computational prediction data 

comprised information from miRNA-mRNA target pairs residing in no fewer than 2 

datasets from HOCTAR (Gennarino, et al., 2011), ExprTargetDB (Gamazon, et al., 

2010), and starBase (Yang, et al., 2011). In total, there were 48866 regulation pairs 

between 641 miRNAs and 7706 target genes. The miRNA-mRNA targeting data is 

saved at IODA\ miRNA_mRNA_interaction_network.txt. Users can update it if 

needed. 

7.5 Target genes cross mapping 

The target genes are detected from various datasets. In order to obtain the enriched 

pathways results, there are two ways to obtain the differentially expressed genes.  

On one hand, users can map the target genes from each microRNA dataset to 

KEGG pathway enrichment tool, respectively. Then users can get the consistency 

results as the same shown in mRNA level. On the other hand, users can make the gene 

consistency analysis before pathways enrichment analysis. It can identify the target 

genes involved in all datasets. The target genes which are targeted by most of 
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microRNA datasets maybe play an important role in the cancer progression. At first, 

users click the button ―Cross Results‖ to cross the results for each dataset, then the 

target genes appear times will be stored in the memory. Secondly, users click the button 

―Show Cross Result‖ to see the target genes overlapping results in gene level as shown 

below. The y-axis is the amount of genes appears in multiple datasets. And the x-axis is 

the target genes in how many datasets. The bar graph represents the distribution of 

enriched target genes. It is similar as shown in pathway consistency analysis. There are 

two choices in the right side of the bar chart box. Users can select the number of cross 

genes from the ―Cross genes‖ combo box. The number is enriched target genes shared 

by number datasets. At last uses click the ―Output‖ button to output the genes in 

various datasets.  

 

Fig. 25. The enriched target genes. 

 

Fig. 26. The enlarged bar chart of enriched target genes. 
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7.6 Pathway enrichment analysis 

With the outlier genes from the cross genes results or target genes from each 

dataset, users can got the pathway results as shown in Chapter 5. 

7.7 Pathways cross mapping 

Making the consistency analysis of enriched pathways, users can follow the same 

steps as shown in the step 5 in chapter 6. 

7.8 Show pathway cross mapping results 

Here, this step is same to the step 6 in chapter 6. Users can get the pathway 

overlapping results. 
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Chapter 8 The fifth step-Run ChIP-seq level  

The analysis of ChIP-seq was integrated in the IODA in ―Run ChIP-seq‖ panel. 

The panel is shown below. There are also three sub tabs for the downstream analysis. 

It is MACS tool, PeakAnalyzer tool and Results. 

 

Fig. 27. The interface of ChIP-seq analysis. 

8.1 Prepare ChIP-seq datasets 

Firstly, users need to prepare the ChIP-seq data to the requirement of IODA for the 

following analysis. 

Here, users can use the ChIP-seq datasets which are the binding sites of the 

disease related specific transcription factors, such as AR and FoxA1. 

Uniform plain text should follow the note: 

 For BED format, the 6th column of strand information is required by MACS. And 

http://liulab.dfci.harvard.edu/MACS/index.html
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please pay attention that the coordinates in BED format is zero-based and 

half-open (http://genome.ucsc.edu/FAQ/FAQtracks#tracks1). 

 For plain ELAND format, only matches with match type U0, U1 or U2 is 

accepted by MACS, i.e. only the unique match for a sequence with less than 3 

errors is involed in calculation. If multiple hits of a single tag are included in your 

raw ELAND file, please remove the redundancy to keep the best hit for that 

sequencing tag. 

 For the experiment with several replicates, it is recommended to concatenate 

several ChIP-seq treatment files into a single file. To do this, under Unix/Mac or 

Cygwin (for windows OS), type: 

$ cat replicate1.bed replicate2.bed replicate3.bed > all_replicates.bed 

 ELAND export format support sometimes may not work on your datasets, 

because people may mislabel the 11th and 12th column. MACS uses 11th column 

as the sequence name which should be the chromosome names. 

We show an example of uniform file as below: 

 

Fig. 28. An example of ChIP-seq data. 

8.2 Peak detection by MACS 

Next generation parallel sequencing technologies made chromatin 

immunoprecipitation followed by sequencing (ChIP-seq) a popular strategy to study 

genome-wide protein-DNA interactions, while creating challenges for analysis 

algorithms. Zhang et al present Model-based Analysis of ChIP-seq (MACS) on short 

reads sequencers such as Genome Analyzer (Illumina / Solexa). MACS empirically 

models the length of the sequenced ChIP fragments, which tends to be shorter than 

sonication or library construction size estimates, and uses it to improve the spatial 

http://genome.ucsc.edu/FAQ/FAQtracks#tracks1
http://liulab.dfci.harvard.edu/MACS/index.html
http://liulab.dfci.harvard.edu/MACS/index.html
http://www.ncbi.nlm.nih.gov/pubmed?term=Zhang%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=18798982
http://liulab.dfci.harvard.edu/MACS/index.html
http://liulab.dfci.harvard.edu/MACS/index.html
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resolution of predicted binding sites. MACS also uses a dynamic Poisson distribution 

to effectively capture local biases in the genome sequence, allowing for more sensitive 

and robust prediction. MACS compares favorably to existing ChIP-seq peak-finding 

algorithms, is publicly available open source, and can be used for ChIP-seq with or 

without control samples(Zhang, et al., 2008). 

To install the MACS tool, Python version must be equal to 2.6 or 2.7 to run it. We 

recommend using the version 2.7. The MACS tool provided by Zhang et al is based on 

command terminal. In order to make it convenient for users and integrated in IODA 

on Java platform, we make a visualization of MACS tool on Java platform instead of 

command line.   

There are many options for users to set parameters in command line by MACS. 

Here, we make these parameters in a visual way and users can set and fill it by 

themselves easily. If users are used to run it on command line, they can also click the 

button ―Create Command‖ to fill the command line in textbox. Here, we make the 

default parameter initially. Users can click the button ―select‖ around the TFILE to 

input the ChIP-seq data while clicking the button ―select‖ around the CFILE to input 

the control data. Afterwards, users should iput the name of the output file in the 

textbox called ―NAME‖. After setting the parameters, users will click the button 

―Run‖ to generate the Peaks detection results. 

Note: If you are interested on the details on the parameters, please visit the original 

website of MACS (http://liulab.dfci.harvard.edu/MACS/index.html). 

There may be many different kinds of output files as follows: 

 NAME_peaks.xls is a tabular file which contains information about called peaks. 

You can open it in excel and sort/filter using excel functions. Information include: 

chromosome name, start position of peak, end position of peak, length of peak 

region, peak summit position related to the start position of peak region, number 

of tags in peak region, -10*log10 (pvalue) for the peak region (e.g. pvalue is 

1e-10, then this value should be 100), fold enrichment for this region against 

random Poisson distribution with local lambda, FDR in percentage. Coordinates 

in XLS is 1-based which is different with BED format. 

http://liulab.dfci.harvard.edu/MACS/index.html
http://liulab.dfci.harvard.edu/MACS/index.html
http://liulab.dfci.harvard.edu/MACS/index.html
http://liulab.dfci.harvard.edu/MACS/
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 NAME_peaks.bed is BED format file which contains the peak locations. You can 

load it to UCSC genome browser or Affymetrix IGB software. 

 NAME_summits.bed is in BED format, which contains the peak summits 

locations for every peaks. The 5th column in this file is the summit height of 

fragment pileup. If you want to find the motifs at the binding sites, this file is 

recommended. 

 NAME_negative_peaks.xls is a tabular file which contains information about 

negative peaks. Negative peaks are called by swapping the ChIP-seq and control 

channel. 

 NAME_model.r is an R script which you can use to produce a PDF image about 

the model based on your data. Load it to R by: $ R --vanilla < 

NAME_model.r Then a pdf file NAME_model.pdf will be generated in your 

current directory. Note: R is required to draw this figure. 

 NAME_treat/control_afterfiting.wig.gz files in NAME_MACS_wiggle directory 

are wiggle format files which can be imported to UCSC genome 

browser/GMOD/Affy IGB. The .bdg.gz files are in bedGraph format which can 

also be imported to UCSC genome browser or be converted into even smaller 

bigWig files. 

 NAME_diag.xls is the diagnosis report. First column is for various 

fold_enrichment ranges; the second column is number of peaks for that fc range; 

after 3rd columns are the percentage of peaks covered after sampling 90%, 80%, 

70% ... and 20% of the total tags. 

 NAME_peaks.subpeaks.bed is texts file which IS NOT in BED format. This file 

is generated by PeakSplitter 

(<http://www.ebi.ac.uk/bertone/software/PeakSplitter_Cpp_usage.txt>) when 

—call-subpeaks option is set. 

Here, we show an example of NAME_peaks.bed file which is obtained by the demo 

files using MACS: 

http://liulab.dfci.harvard.edu/MACS/index.html
http://www.ebi.ac.uk/bertone/software/PeakSplitter_Cpp_usage.txt
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Fig. 29. An example of MACS result. 

8.3 Peak annotation by PeakAnalyzer 

 

Fig. 30. The interface of PeakAnalyzer panel. 

After obtaining the peaks detection results, in order to study these peaks in 

biological way, we need to understand the position of these peaks in the genome 

sequence and the containing genes nearby it. PeakAnalyzer is a free tool to achieve 

these functions in graphic user interface (GUI) which can be downloaded on the 

website (http://www.bioinformatics.org/peakanalyzer/wiki/Main/Download). Here, 

we also integrative it in IODA. 

Turning to ―PeakAnalyzer‖ tab, users can click the button ―Start PeakAnalyzer‖ to 

http://www.bioinformatics.org/peakanalyzer/wiki/Main/Download
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run the PeakAnalyzer tool, a new window will be popped up as shown below. 

 

Fig. 31. The interface of PeakAnalyzer. 

At first, there are two choices, here, we choose the ―Peak Annotation‖ and click 

button ―Next‖. Afterwards, there will be three choices called ―NDG-Nearest 

Downstream Genes‖, ―TSS-Nearest Transcription Start Site‖ and ―ODS-Overlapping 

Data Sets (peak files)‖.In order to detect the overlapping genes of nearest downstream 

genes and peaks genes, we select the first item and click the button 

―Next‖.  Immediately following, we can import the peaks files which are detected by 

the MACS in the following window. 

 

Fig. 32. The interface of Nearest Downstream Genes. 

Firstly, users import the peak file by clicking the ―Browse‖ button and select the 

appropriate annotation file. Then, users need to select ―Coding genes only‖ or 

―Coding and non-coding genes‖. Afterwards, users set up the ―symbol file‖. 
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Subsequently, after setting the output path in ―Output Folder‖ and typing the output 

file name in ―Prefix‖. Finally, users click the button ―Next‖ to run the program. With 

the progress completely, the software will give a choice for users to select whether to 

generate the PDF picture. Users can generate it if they have installed the R statistical 

software. Certainly, the results contain the information of downstream and 

overlapping genes in the BED format file.  

We show a result file for example as below (The file name is 

NAME_peaks.summary.bed.): 

 

Fig. 33. An example of PeakAnalyzer result. 

8.4 Obtain the gene symbols 

From annotation files generated by step 3, there are a lot of columns. Users can 

select the annotation file by click the button ―Browse‖. Subsequently, users click the 

button ―Get genes‖ to get the gene symbols form the annotation files. Finally, users 

can click ―Copy‖ button to copy the results for pathway enrichment analysis directly 

or ―Save‖ to save the results in a new file.  

8.5 MACS running results 

The ―Results‖ tab shows the operating state of MACS panel in ChIP-seq analysis, 

such as ―Begin time‖, ―End time‖, ―Running state‖ and so on. 
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8.6 Pathway enrichment analysis 

Users can get the pathway results as shown in Chapter 5. 

8.7 Pathways cross mapping 

 This step is same to the step 6 in chapter 6. Users can get the pathway overlapping 

results. 
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Chapter 9 The sixth step - Meta-analysis 

The last step makes the meta-analysis of the different omics level data. Input the 

overlapping pathway results of three omics level and click ―Cross Mapping different 

pathways‖ to generate the consistency pathway results, this leads to the final results to 

users. 

 

Fig. 34. The interface of Meta-analysis panel. 

9.1 Input overlapped pathways of different omics level 

IODA is a meta-analysis tool to analysis the data from different labs and omics data 

level. It can make up for the inadequacy of various datasets and show a consistency 

result. Users can click the different button ―Pathways of mRNA‖, ―Pathways of 

microRNA‖ and ―Pathways of ChIP-seq‖ to input different omics level overlapped 

pathways. After that, all the input data will be shown in the following table. The file 

paths are shown on the left side while the omics level of this file is shown on the right 
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side. Users can select the datasets and then click the button ―Cross mapping different 

pathways‖ and will make the consistency on these pathway results. If users click the 

button ―Reset‖, the pathway list table will be clear. 

 

Fig. 35. The pathway list table of meta-analysis panel. 

9.2 Meta-analysis process 

After clicking the button ―Cross mapping different pathways‖, the overlapping 

pathway results and the occurrence number will be shown in the follow textbox. And a 

file save dialog will show to save the consistency results. 

In order to give more details of the results to the researchers, IODA provide the 

gene information for each pathway about this gene involved in which datasets and 

omics level as shown below: 

 

Fig. 36. An example of meta-analysis result. 
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Chapter 10 Run demo for IODA  

In order to show how to use IODA completely, we provide demo omics data to 

analysis each omics level data. All these datasets are stored in the folder ―demo‖. 

10.1 Input mRNA level omics dataset 

Here we provide six mRNA level microarray datasets downloaded at Gene 

Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) database for prostate cancer 

which had been generated by independent laboratory. These datasets were measured 

with different technologies and platforms as shown below. 

Table 3 The demo datasets of mRNA 

Dataset GEO series Platform Probes Samples Statistical 

method Normal Cancer 

Varambally GSE3325 Affymetrix 

HG-U133P2 

54,675 6 13 t-test 

Nanni S GSE3868 Affymetrix 

HG-U133A 

22,283 2 22 SAM 

Chandran,Yu  GSE6919 Affymetrix 

HG_U95Av2 

12,625 18 90 t-test 

Yipeng Wang GSE17951 Affymetrix 

HG-U133P2 

54,675 45 109 t-test 

Kim JH GSE27616 Agilent-014850 

4x44K G4112F 

45,220 4 9 t-test 

Chen JH GSE28204 Agilent-014850 

4x44K G4112F 

19567 4 4 t-test 

10.2 Input microRNA level omics dataset  

Here we provide three microarray datasets also downloaded at Gene Expression 

http://www.ncbi.nlm.nih.gov/geo/
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Omnibus (http://www.ncbi.nlm.nih.gov/geo/) database for prostate cancer which had 

been generated by independent laboratory. These datasets were measured with different 

technologies and platforms as shown below. 

Table 4 The demo datasets of microRNA 

Dataset GEO series Platform Probes Samples Statistical 

method Normal Cancer 

Ambs S GSE8126 OSU-CCC 

Has-miRNA-chip  

Version3 

474 16 60 t-test 

Taylor GSE21036 Agilent-019118 373 28 113 Mixture 

model 

Wach GSE23022 Affymetrix 

miRNA Array 

847 20 20 ANOVA 

10.3 Input ChIP-seq level omics dataset  

Here we provide three microarray datasets also downloaded at Gene Expression 

Omnibus (http://www.ncbi.nlm.nih.gov/geo/) database for prostate cancer which had 

been generated by independent laboratory. 

Table 5 The demo datasets of ChIP-seq 

Protein GEO series Platform Format 

AR_ET GSE28264 

(GSM699630) 

Illumina Genome Analyzer II 

(Homo sapiens) 

BED 

POLII_ET GSE28264 

(GSM699636) 

Illumina Genome Analyzer II 

(Homo sapiens) 

BED 

NKX31_ET GSE28264 

(GSM699632) 

Illumina Genome Analyzer II 

(Homo sapiens) 

BED 

FOXA1_ET GSE28264 

(GSM699634) 

Illumina Genome Analyzer II 

(Homo sapiens) 

BED 

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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10.4 Run IODA with demo datasets   

Click the button ―Run demo‖, the demo datasets will be loaded. And the datasets 

will be analyzed for each dataset individually as shown below. 

 

Fig. 37. Screenshot for Run ―Test for best algorithm‖ panel 

. 
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Chapter 11 Note 

IODA is an integrative tool which contains many panels. Each panel can be used 

individually, such as: 

1. Test for best algorithm for microarray expression dataset 

2. Detect differentially expressed genes and microRNAs 

3. MicroRNA target genes detection 

4. Peaks detection of ChIP-seq data by MACS in a visualization interface  

5. Peaks annotation by PeakAnalyzer 

6. Pathway enrichment analysis 

7. Pathway consistency analysis 

8. Meta-analysis of pathway results 
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